

Technology Insight Report

ROBOTIC ARMS

"Robotics is a field concerned with the intelligent connection of perception to action." A Robot is a reprogrammable manipulator designed to move material, parts, or specialized devices through various programmed motions for performing various tasks.

The most common manufacturing robot is the robotic arm. A typical robotic arm is made up of seven metal segments, joined by six joints. The computer controls the robot by rotating individual step motors connected to each joint (some larger arms use hydraulics or pneumatics)

This report takes a look into the patenting activity around robotic arms uncovering the key companies, inventors, and different sub categories.

<u>Disclaimer:</u> This report should not be construed as business advice and the insights are not to be used as the basis for investment or business decisions of any kind without your own research and validation. Gridlogics Technologies Pvt. Ltd disclaims all warranties whether express, implied or statutory, of reliability, accuracy or completeness of results, with regards to the information contained in this report.

Introduction to Robotic Arm

Arms are types of jointed robot manipulator that allow robots to interact with their environment. Many have onboard controllers or translators to simplify communication, though they may be controlled directly or in any number of ways. Due to this fact, standalone arms are often classified as full robots. The robot arms can be autonomous or controlled manually and can be used to perform a variety of tasks with great accuracy. The robotic arm can be fixed or mobile (i.e. wheeled) and can be designed for industrial or home applications.

There are many different types of robotic arms, but most can be characterized by their mechanical structure. Cartesian (also known as Gantry) robots have three joints that are coincident with the standard X-Y-Z Cartesian axes. Cylindrical arms have any number of joints that operate on a cylindrical axis, normally rotating about one fixed rod. Spherical (polar) arms are those with joints that allow it full rotation throughout a spherical range. SCARA robots have two parallel rotary joints to allow full movement throughout a plane, typically for pick-and-place work. Articulated robots are used for complex assembly operations, and consist of three or more rotary joints. Parallel robots have three concurrent prismatic or rotary joints, and allow for tilting of heavy or sensitive platforms.

Overview

With the help of Patent iNSIGHT Pro, we will analyze the patent data around Robotic Arm to find answers to the following:

- What does the IP publication trend for Robotic Arm look like and how have the filings evolved?
- Who are the top assignees or key players in Robotic Arm and what are their technology wise trends?
- How is research in Robotic Arm spread across different countries?
- How is the Assignee portfolio spread across different robot types?
- How are Key Assignees filing across different IPC?
- Which parts are used across different types of robots?

To get deeper insights the patent set has been classified as follows:

By Robot Types

- Anthropomorphic Robots
- Articulated Robots
- Cartesian/ Gantry Robots
- Cylindrical Robots
- Industrial Robots
- Parallel Robots
- SCARA Robots
- Spherical/ Polar Robots

Shadow Leg

By Applications of Robotic Arms

- Agriculture
- Defense
- Material Handling
- Medical
- Other Industrial Applications
- Welding

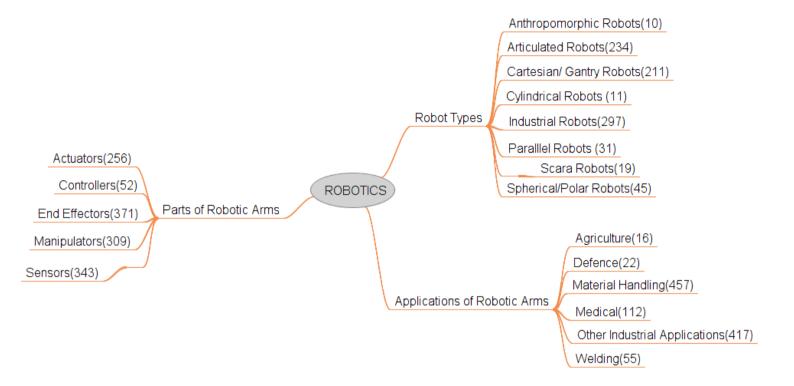
Note: Other Industrial Applications include: bonding/sealing, deburring, spraying, grinding, milling, polishing, waterjet, cleanroom, drilling, foundry, assembling

Image Source:

http://www.google.co.in/search?q=robotics+agriculture&hl=en&prmd=imvns&source=lnms&tbm=isch&ei=0ndLT4zbKYHWrQekzNi3Dw&sa=X&oi=mode_link&ct=mode&cd=2&sqi=2&ved=0CDYQ_AUoAQ&biw=1600&bih=756

By Parts of Robotic Arms

- Actuators
- Controllers
- End Effectors
- Sensors


Image Source:

http://www.engineersgarage.com/articles/robotics-tutorial-introduction-robots

The illustration below shows the different categories prepared and the number of records in each. The categorization involved defining a search strategy for each topic and then conducting the search using the Advanced Searching capability in Patent iNSIGHT Pro. Details of search strings used for each category are given in Appendix B.

ROBOTICS CATEGORIZATION TREE

The Search Strategy

Note: This report excludes programming facets of robotics.

Using the commercial patent database PatBase as our data source we used the following search query to create our patent set.

FT- Full Text
TAC – Title Abstract Claims
IC – International Class
UC- US Class

(FT=(robot* or (artificial w/2 intelligence) or android or cyborg or humanoid*)) or (TAC= (manipulator* or manipulater* or actuator* or actuater* or drives or joint or joints or actuation or ("end effector" or "end effecter") or ((pneumatic* or air) w/2 muscle*))) and ((IC= B25J9/02 or B25J9/04 or B25J9/06 or B25J13/02 or B25J13/08 or B25J17 or B25J18) or (UC=901/2 or 901/14 or 901/19 or 901/27 or 901/31 or 901/39 or 700/245 or 700/248 or 700/261))

The queries were combined using the 'OR' operator to search in full text and title, abstract, claims and a patent set of 2352 records with one publication per family was generated.

The publications included in the report are updated as of 6th February, 2012.

Class Descriptions of Classes used in Search Strategy

B25J 9/02: characterised by moveme	nt of the arms, e.g. cartesian
co-ordinate type (B2519/06 takes pre	cedence) [4]

B25J 9/04: by rotating at least one arm, excluding the head movement itself, e.g. cylindrical co-ordinate type or polar co-ordinate type [4]

B25J 9/06: characterised by multi-articulated arms [4]

B25J 13/02: Hand grip control means

B25J 13/08: by means of sensing devices, e.g. viewing or touching

devices [4]

B25J 17/00: Joints

B25J18/00: Arms [4]

Class Descriptions Continued...

901/2: ARM MOTION CONTROLLER

901/14: ARM MOVEMENT (SPATIAL)

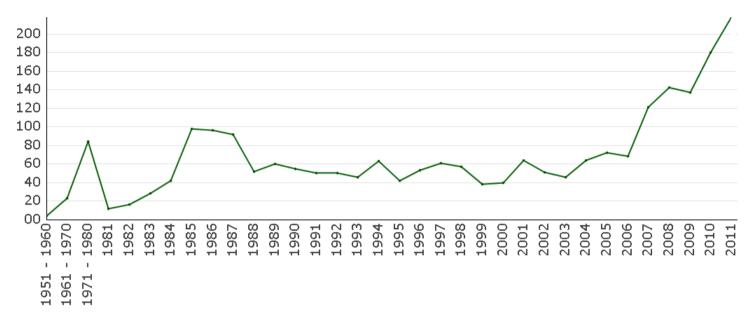
901/19: DRIVE SYSTEM FOR

ARM

901/27: ARM PART

901/31: Gripping Jaw 901/39: Jaw Structure

700/245: Robot control 700/248: Plural robots


700/261: Having control of

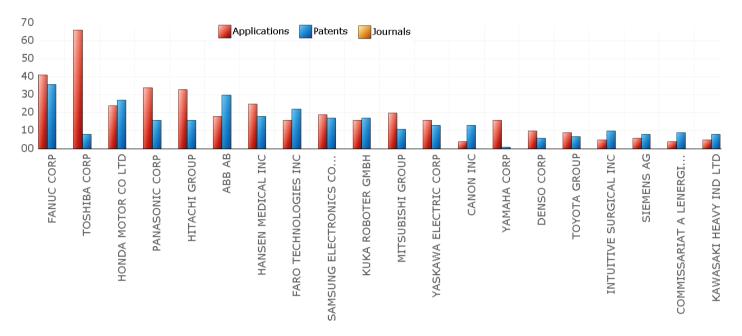
robot torque

Publication Trend

What has been the IP publication trend for Robotic Arms?

Patents related to robotic arms can be traced back to 1951 and the real surge in the activity around this technology has happened in the last 5 to 6 years. Noticeably there was an increase in publications from 2007 onwards.

It's clear the current activity around these technologies is likely to continue seeing more innovation in the near future.


How we did it?

Once the patents were populated in Patent iNSIGHT Pro, the publication trend chart was generated on a single click using the dashboard tool.

Top Assignees

Who have been the top assignees or the key players within this industry?

The top assignees are:

- FANUC CORP
- 2. TOSHIBA CORP
- 3. HONDA MOTOR CO LTD
- 4. PANASONIC CORP
- 4. HITACHI GROUP
- 5. ABB AB
- 6. HANSEN MEDICAL INC
- 7. FARO TECHNOLOGIES INC
- 9. SAMSUNG ELECTRONICS CO LTD
- 10. KUKA ROBOTER GMBH

- 11. MITSUBISHI GROUP
- 12. YASAKAWA ELECTRIC CORP
- 13. CANON INC
- 14. YAMAHA CORP
- 15. DENSO CORP
- 16. TOYOTA GROUP
- 17. INTUTITIVE SURGICAL INC
- 18. SIEMENS AG
- 19. COMMISSARIAT ALENERGIE ATOMIQUE
- 20. KAWASAKI HEAVY IND LTD

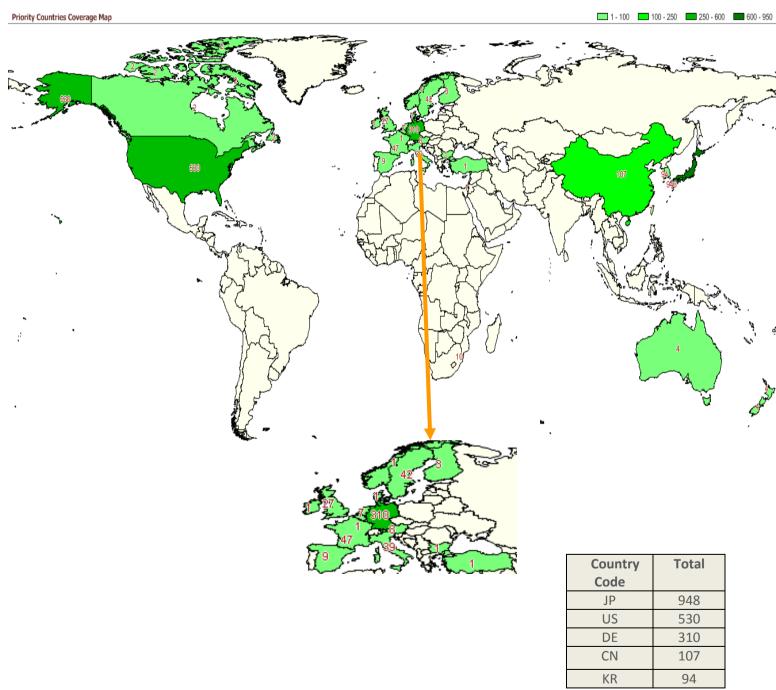
How we did it?

Once the patents were populated in Patent iNSIGHT Pro, the assignee clean- up tools were used to normalize the names. Different cleanup tools were leveraged:

- To locate assignees for unassigned records
- To clean up records having multiple assignees
- To locate the correct assignee names for US records using the US assignments database
- To merge assignees that resulted from a merger or acquisition or name change.

Please refer Appendix A for more details on Assignee merging.

Once the Assignee names were cleaned up, the dashboard tool within Patent iNSIGHT Pro was used to find the top 20 assignees within the given patent set. A visual graph was created based on the results of the top assignees with the number of patents alongside each one.


The complete Assignee table in available in the following Excel file: http://www.patentinsightpro.com/techreports/0312/List%20of%20Assignees.xls

Top Countries

How is research in Robotic arm spread across different countries?

In terms of regional pockets where patent protection is being sought most frequently for these technologies, JP leads the count, followed by the US and DE. The table below ranks top priority countries and helps provide an indication of where innovation in this area is originating:

How we did it?

The map was generated using the Priority country coverage map option provided in the dashboard tool within Patent iNSIGHT Pro.

Assignee - Key Statistics

Here we summarize key parameters of Top 15 Assignees such as filing trend, Avg. number of Forward citations per record, Top inventors in each Assignee, Top Co-Assignees and Coverage of underlying patent families

	Total	Avg. No. of Fwd		Filing				(Inc	Covera cludes fa			
Assignee	No. of Recor ds	Cites per Patent	Filing Trend (Absolute)	Year Range	Key Inventor (Top 5)	Sn	EP	WO	JP	DE	CN	KR
FANUC CORP	77 (3.3%)	4.21	1950 2011	1983- 2011	ITO SUSUMU(10) HAMURA MASAYUKI(9) NAKAJIMA SEIICHIROU(5) TANAKA AKIRA(5) TORII NOBUTOSHI(5)	47	1	1	25	1	0	0
TOSHIBA CORP	74 (3.1%)	2.73		1969- 2011	KITAGAWA TSUGUYOSHI(7) MUNAKATA TADASHI(6) MIYAZAKI KIYOSHI(5) ISHINO KATSUZOU(5) MUROTANI TETSUO(3)	11	0	0	67	0	0	0
HONDA MOTOR CO LTD	51 (2.2%)	4.59		1985- 2011	HASEGAWA TADAAKI(6) SUGIYAMA KENICHIRO(4) SANO SHIGEO(3) MAKI KOJI(3) MIKURUBE ATSUSHI(3)	36	0	2	10	0	2	1
PANASO NIC CORP	50 (2.1%)	3.36	<u> </u>	1980- 2011	OKAZAKI YASUNAO(6) JIN KEIICHI(6) JIYOU YASUNORI(4) TAKEMOTO YOSHIROU(2) YAMASHITA KAZUICHI(2)	31	6	13	53	3	7	2

Transfo	rm Pa	tents 1	to In	itelligei	nce
---------	-------	---------	-------	-----------	-----

	-			-				'	ransioi	iii i atei	113 10 1111	elligence
HITACHI GROUP	49 (2.1%)	10.96		1975- 2009	KONO MICHINAGA(4) NAKAYAMA SUSUMU(3) ISHIKAWA YOSHIO(2) SUGIYAMA SAKAE(2) SUZUKI MASANORI(2)	16	5	0	60	2	0	2
ABB AB	48 (2%)	7.58		1980- 2011	BROGARDH TORGNY(7) KOCK SOENKE(5) BRANTMARK HAKAN(2) WINTERHALTER CHRISTOPH(2)HAAGE MATHIAS(2)	50	22	14	6	17	9	1
HANSEN MEDICAL INC	43 (1.8%)	8.77	M.	2000- 2011	LEE WOOJIN(28) ROGERS GARY(9) BROCK DAVID L(7) SOLBJOR ALBERT(5) AILENGER ROBERT(3)	19	2	2	0	1	1	0
FARO TECHNO LOGIES INC	38 (1.6%)	3.61		1998- 2011	BARBER MARC(22) SAJEDI SEYED ALI(22) RAAB SIMON(13) ATWELL PAUL CHRISTOPHER(4) BARBA JACINT R(3)	12	0	0	0	3	3	0
SAMSUN G ELECTRO NICS CO LTD	36 (1.5%)	1.33		1985- 2010	LIM BOK MAN(4) KIM MYUNG HEE(4) CHOI YONG WON(3) KANG KYUNG WON(2) HONG KWANG JIN(2)	17	0	0	2	0	0	16
KUKA ROBOTE R GMBH	33 (1.4%)	5.27	M.	1977- 2011	HIETMANN GERHARD(3) ZIMMER ERNST(3) KARLINGER STEFAN(2) STURM STEFAN(2) MARTIN DAVID(2)	18	17	3	2	44	2	4
MITSUBI SHI GROUP	31 (1.3%)	6.06	\.	1983- 1997	TANAKA MINORU(7) YAMAMOTO MASAYUKI(7) KATO HISAO(6) TAKAMURA YOUSUKE(4) FUJIMURA HIROSHI(2)	10	0	0	36	0	0	1

Transform	Patents t	o Intellio	ence

YASKAW A ELECTRIC CORP	29 (1.2%)	4.72	 1982- 2011	TANAKA KENTARO(4) SUEYOSHI SATOSHI(3) TANAKA MICHIHARU(2) FUKUDOME KAZUHIRO(2) MATSUKUMA KENJI(2)	17	1	3	18	0	1	2
CANON INC	17 (0.7%)	10.29	 1988- 2009	AZUMA YUSAKU(7) ISHIHARA KATSUMI(3) KIGAMI HIROYUKI(2) MACHINO MASAKI(2) YAMAMOTO TOSHIHIRO(2)	18	2	0	14	0	0	0
YAMAHA CORP	17 (0.7%)	0.41	 1976- 2008	KAWADA KOJI(4) KAIEDA TAKASHI(3) SHINDO HIROSHI(3) IWAI KAZUO(2) SUZUKI KOJIRO(1)	1	0	0	16	0	0	0
DENSO CORP	16 (0.7%)	0.5	 2002- 2009	TAKEDA SHIGERU(5) KAMIYA KOJI(3) UEYAMA TSUYOSHI(2) TANIGUCHI EISUKE(1) SANEKATA YUICHI(1)	9	0	0	8	0	0	0

How we did it?

From the Assignee 360° report options, we selected Top 15 Assignees and the different pieces of information we wanted to include in the singular display and then ran the report. The generated report was then exported to Excel using the option provided for the same.

Inventor - Key Statistics

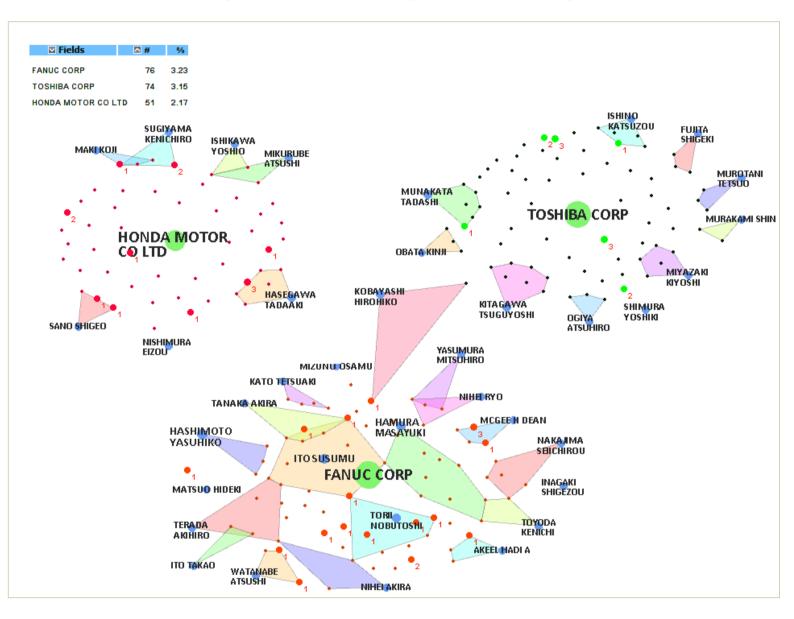
Here we summarize key parameters of Top 15 Inventors such as filing trend, average number of forward citations per record, key associated companies and top 5 co-inventors.

Inventor	Total No. of Records	Average No. of Fwd Cites per Patents	Filing Trend (Absolute)	Filing Year Range	Key Assignees (Top 5)	Co-Inventors
LEE WOOJIN	32 (1.4%)	11.59	1950 2011	2000- 2010	HANSEN MEDICAL INC(28) LEE WOOJIN(4) ROGERS GARY(3)	ROGERS GARY(7) CHAMORRO ANDRES(3) AILENGER ROBERT(2) CHAMORRO III ANDRES(2)
BARBER MARC	22 (0.9%)	3.68		2003- 2007	FARO TECHNOLOGIES INC(22)	SAJEDI SEYED ALI(18) HASLOECHER KENNETH J(2) RAAB SIMON(2) HELM C ANDREW(1) SAJEDI ALLEN(1)
SAJEDI SEYED ALI	22 (0.9%)	3.68	/\.	2003- 2006	FARO TECHNOLOGIES INC(22)	BARBER MARC(18) RAAB SIMON(3) HASLOECHER KENNETH J(1)
RAAB SIMON	13 (0.6%)	10.15		1998- 2007	FARO TECHNOLOGIES INC(13)	SAJEDI SEYED ALI(3) BARBA JACINT R(2) BARBER MARC(2) ATWELL PAUL CHRISTOPHER(1) HASLOECHER KENNETH J(1)
HASHIMOTO YASUHIKO	12 (0.5%)	3		1992- 2011	KAWASAKI HEAVY IND LTD(8)	KUBO YOSHIYUKI(1) OHYA TOMOKI(1)

					FANUC CORP(3) HITACHI GROUP(1)	YOSHIDA TETSUYA(1) YOSHIDA TOSHIAKI(1)
ROGERS GARY	12 (0.5%)	30.92		2001- 2008	HANSEN MEDICAL INC(9) LEE WOOJIN(3) ROGERS GARY(3)	LEE WOOJIN(7) SOLBJOR ALBERT(5) AILENGER ROBERT(1)
ITO SUSUMU	11 (0.5%)	9.09		1981- 1990	FANUC CORP(10) FUJITSU FANUC LIMITED(1)	TANAKA AKIRA(5) TERADA AKIHIRO(2) HAMURA MASAYUKI(1) INABA HAJIMU(1) IWASAKI KYOJI(1)
SOLOMON NEAL	11 (0.5%)	7.55		2003- 2008	SOLOMON RESEARCH LLC(11)	No Co-Inventor Present
HAMURA MASAYUKI	9 (0.4%)	1.33		1984- 1995	FANUC CORP(9)	TOYODA KENICHI(2) WAKIO HIROSHI(2) ITO SUSUMU(1) SAKAMOTO SHINSUKE(1)
RONEN AMIR	8 (0.3%)	5.25	M	2003- 2011	SANDISK IL LTD.(7) M SYSTEMS FLASH DISK PIONEERS LTD(1)	No Co-Inventor Present
YAZAWA TAKAYUKI	8 (0.3%)	0.25		2004- 2008	NIDEC SANKYO CORP(8)	ARAKAWA HIROSHI(2) NAKAJIMA HIROTO(1) SATO SHIRO(1)
AZUMA YUSAKU	7 (0.3%)	18.29		1990- 1994	CANON INC(7)	ISHIHARA KATSUMI(2) KIGAMI HIROYUKI(2) KARUBE YASUO(1) KASAI SHOZO(1) OOSAKA TEIJI(1)

BROCK DAVID L	7 (0.3%)	53	 2002- 2007	HANSEN MEDICAL INC(7)	AILENGER ROBERT(1) WEITZNER BARRY(1)
BROGARDH TORGNY	7 (0.3%)	4	 2000- 2007	ABB AB(7)	KOCK SOENKE(1) OLEVIK ANDREAS(1)
KATO HISAO	7 (0.3%)	10.71	 1986- 1989	MITSUBISHI GROUP(6) SHIN MEIWA IND CO LTD(1)	YOSHIMURA MAYUMI(1)

How we did it?


From the Inventor 360° report options, we selected the different pieces of information we wanted to include in the singular display and then ran the report. The generated report was then exported to Excel using the option provided for the same.

Analysis of key inventor groups of top three assignees

The generated map below highlights the key inventor groups of top three assignees. The numbers besides the nodes represent citation count for respective inventors.

Key inventors present in the map, for instance, Hasegawa Tadaaki for Honda Motor Co Ltd has total 3 citations. Also groups of inventors who file together appear clustered together.

How we did it?

Using the VizMAP tool, patents of top three assignees, namely, Fanuc Corp, Toshiba Corp and Honda Motor Co Ltd were loaded. These were then expanded by their respective inventor names. The VizShade option was used to shade the inventors with potential overlapping patents between them and citation count from the current data set is displayed.

Robotic Arm: Applications vs Assignees

Which assignees hold the maximum inventions across different application areas of robotic arms?

In the below matrix leading patent holdings with each applications have been highlighted with stronger shades of green for large number of patents within that category. Solomon Research LLC concentrates on Defense applications. Hansen Medical Inc with 36 records heads the Medical application field closely followed by Intuitive Surgical Inc with 15 records.

Applications(Row)		rial ling	ical	dustrial	ling	nse	ılture
Key Assignees (Column)	Total	Material Handling	Medical	Other Industrial Applications	Welding	Defense	Agriculture
Total	283	122	64	129	26	11	6
HANSEN MEDICAL INC	36		36	14			
ABB AB	25	16		13	5		
FANUC CORP	23	9		14	2	1	
INTUITIVE SURGICAL INC	15	7	15	3			
TOSHIBA CORP	14	4		11			
HONDA MOTOR CO LTD	12	6		3	4		
YASKAWA ELECTRIC CORP	11	5	1	4	1		
PANASONIC CORP	11	6		4	1		
HITACHI GROUP	10	4		5	3		
BROOKS AUTOMATION INC	10	7	1	5			
SOLOMON RESEARCH LLC	9					9	

KUKA ROBOTER GMBH	9	4	1	2	2		
SAMSUNG ELECTRONICS CO LTD	8	6		2		1	
MITSUBISHI GROUP	7	2		2	4		
LEMELSON JEROME H	7	6	2	7	1		
SIEMENS AG	6	3	2	2			
IBM CORP	6	4	1	3			
GENERAL MILLS INC	6	6					
FARO TECHNOLOGIES INC	6	1		6			
APPLIED MATERIALS INC	6	4		6			
YAMAHA CORP	5	1		5			
UNIMATION INC	5	2		2	2		
TOYOTA GROUP	5	3		1	1		
SRI INTERNATIONAL	5	2	5				2
GENERAL MOTORS CORP	5	3		4			
DELAVAL HOLDING AB	5	1					4
FUJITSU LTD	4	1		4			
DEVOL GEORGE C	4	4					
DAIHEN CORP	4	4		3			
CANON INC	4	1		4			

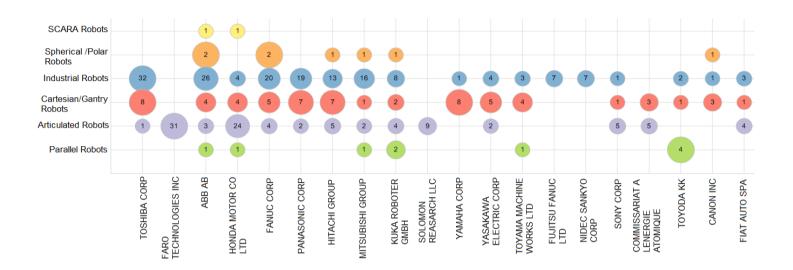
How we did it?

First the various applications of robot arms were identified by manual research. Then by using a combination of semantic analysis tools such as clustering tools and searching tools available in Patent iNSIGHT Pro, patents were categorized under different applications. Finally, a co-occurrence matrix was generated and exported to excel.

Robotic Parts vs Application

The below matrix shows which parts are being used in different applications areas.

Parts (Rows)		rial Iing	cal	lustrial	ing	eo.	lture
Applications (Columns)	Total	Material Handling	Medical	Other Industrial Applications	Welding	Defence	Agriculture
Total	502	294	65	238	28	13	10
End Effectors	255	179	25	120	11	2	5
Sensors	180	105	30	85	11	7	9
Manipulators	160	85	27	81	8	3	5
Actuators	133	71	21	74	5	3	1
Controllers	25	15	5	10	4	1	


How we did it?

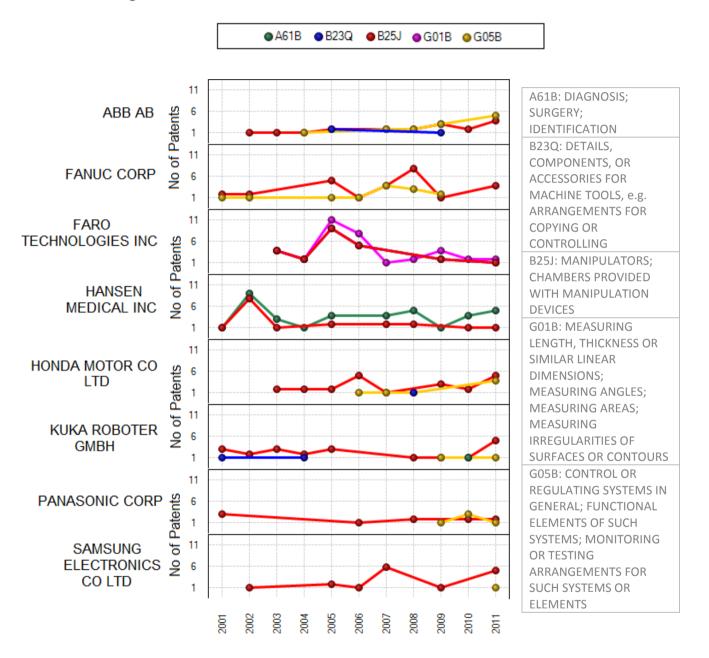
The clusters that were created for the analysis were correlated using the co-occurrence analyzer and then the resulting matrix was exported to Excel.

Robotic Types vs Assignees

How is the Assignee portfolio spread across different robot types?

Toshiba Corp is active across Industrial and Cartesian Robots. Faro Technologies dominates patent holdings for "Articulated Robots" with 31 patent records.

How we did it?


The clusters that were created for the previous analysis were correlated using the co-occurrence analyzer and then the resulting matrix was converted into a bubble chart.

Assignee activity across main IPC

How are Key Assignees filing across different IPC?

The generated map below highlights activity of some of the key assignees across top 5 IPC. From the chart we can see that FANUC CORP is consistent in B25J. So also Hansen Medical Inc is active through A61B.

How we did it?

We manually filtered some of the top IPC to analyze the publications for key assignees using cooccurrence analyser. Thereby a 4-D chart was generated to represent the data.

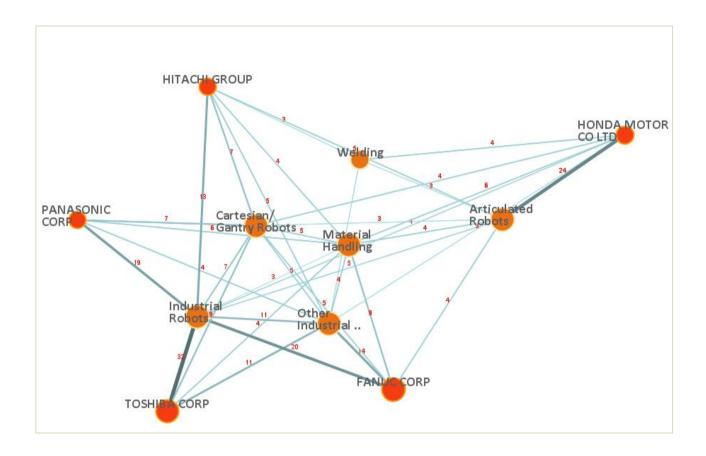
Robotic Arm: Parts vs Types

Which parts are used across different types of robots?

As can be seen in the table end effectors and manipulators are used in all the types of robots making them the most essential parts.

Types(Row)	Total	Manipulators	Actuators	Sensors	Effectors	Controllers
Parts(Column)	Total	Manip	Actu	Sen	End Ef	Contr
Total	300	82	84	117	127	10
Articulated Robots	123	28	36	50	51	3
Cartesian/ Gantry Robots	93	28	23	37	45	3
Industrial Robots	77	14	23	33	25	5
Spherical/ Polar Robots	26	11	12	5	11	
Parallel Robots	19	9	5	3	7	1
SCARA Robots	17	5	5	4	12	
Cylindrical Robots	4	4	2		2	
Anthropomorphic Robots	3	2			2	

How we did it?


The clusters that were created for the previous analysis were correlated using the co-occurrence analyzer and then the resulting matrix was exported to Excel.

Assignee Portfolios spread across different robotics applications and types

In the map, each assignee is connected through links whose thickness and color intensity is directly proportional to the number of records relating them. The number (in red) next to each line represents the number of records held by the Assignee in the particular type and application for robotics.

Honda Motor Co Ltd leads the assignees for patents in Articulated type of robots. Fanuc Corp, Toshiba Corp and Panasonic Corp are actively involved in Industrial Robots.

How we did it?

Using VizMap, records of top 5 assignees were loaded. These assignees were then analyzed on the basis of applications and types. The map generated was finally represented as Correlation Map.

Assignee Portfolios spread across different Technologies

The tables below highlight key technology clusters of top assignees within different markets. The respective headers represent the main cluster, followed by their sub-cluster. We analysed companies in two verticals: Industrial Applications and Medical Applications.

How we did it?

We created patent groups of key assignees and using clustering tools key sub topics were generated. These were then exported to Excel.

Vertical: Industrial Applications

FANUC CORP

	FAI	IUC CORP	I	T
Robot system Robot mechanism Point Robot control apparatus Motor Means for storing Control device Robot hand Force Position and orientation Control unit Rotation drive means Coordinate system Control function Automatically setting Assembly Orientation data Visual sensor Setting section Screw shaft Processing section Output shaft Outer arm Arm tip Welding torch Spherical surface Mirror Linear motion	Set Mounted Moving a workpiece Drive Control operation Servo motor Rotary axis First point Element Line Installation Teaching System for handling Shaft Position and posture Joint Horizontal plane Holding the workpiece Arm assembly Reference position Includes a ball Configuration Body Force sensor External force Center point Ball screw Second pulley Laser beam Direct-acting actuator Imdustrial robe Member hav First end Member hav First end Motary First arm Drive unit Drive motor Rotary First arm Onvement of the robot Movable element Movable element Movrkpiece Turning Spline Joint type Input Distal end Molding machine Conditions Assembly	Drive means	Coordinate Supporting Plurality of robot Path Having a tool Coordinate type robot Arm includes Workpiece comprising Surface Section Second point Posture Movement of the tool Information processing Engaged Coordinate system set Axes Articulating Adjusting Respective robot arm Processing Coating Center Angle	Molded Lift arm Robot arm havir Portion Machine Front side First vertical motion arm Device comprising Axis of the robot Wrist Vertically disposed Operation Molded article Forward end thereof First surface Extending parall Control system Axis perpendicular Supporting the workpiece Electric power Communicating

TOSHIBA CORP

Moving robot Linear moving Speed Robot Control section Body Signal Linear movement type robot Straight moving robot Coordinate Control unit Gripping Rotation angle Original point Mass of a moving Manipulator device Joint Hand Actuator means Robot system Axes Longitudinal	Slider Pulley Motor Moved linearly Slider Moving type robot Belt Face Ball nut Longitudinal direction of the frame Driven Y-axis driving member 3 Spline bush Sensor Rectangular parallelepiped Peripheral surface Turning angle Single axis	Driving Second drive Force Linear Line Rotatably supported Case Arranged Transmitting Pair Working head Signal processing means Shaft extending Rectilinear motion Position signal Gear Cylindrical Angular Swingable Spline shaft Rocking	Control Motor Controller for industrial robot Surface Storage Pulse Terms Straight line Signal processing means responsive Signal indicative Section calculates Linear movement Horizontal Feed Specified position Single axis robot Means for transmitting Face of the arm Center	Robot device Rear Vibration Moving an arm Intermediate Block Attitude Action Movement Tool shaft Imparting Guide Bending Switch Pinion Cutting Orthogonal robot Air Manipulator	Industrial robot Frame Operation Connected Industrial robot Ball screw Belt Shaft Robot actuator Turning Motion Means Acceleration Moving member Hydraulic cylinder
---	---	--	---	---	---

Transform Patents to Intelligence

HONDA MOTOR CO LTD

Controlled object Space Motion Leg bodies Robot Posture Plurality of legs Moving an object Holding Force Control program Module Means for determining Vertical Reference Information the position Grasping First coordinate system	Legged mobile robot Motion of the robot Legged mobile robot control system Arm Virtual space Surface Robot for causing Portion thereof External force End portion Reference point Hand Gait Driving Desired motion Bipedal mobile robot Trajectory System for generating Goton	Motion control Body System for controlling Second predetermined Motion of the object Motion state amount First means Disposed Contact Configured to control Center Virtual surface Model Leg type Basis Program Plane Movable Manner Sequence Second	Robot arm Leg Robot control method Axis of rotation Apparatus comprising Guide rails External Wrist Joint Second robot Control Arm respectively Operation Leg portion Front end Cross Apparatus having Transmitting Right angles Pair of guide Moving the object	Signal Recognized by the second Force sensor Capable Applied to the object Sunroof Right arm Network Magnitude Front surface Depending Carried Acceleration	Joint Second robot Control Arm respectively Operation Leg portion Front end Cross Transmitting Right angles Pair of guide Moving the object Level Legged mobile robot Intermediary Equipped Electric motor Coupling Constant Bracket X-axial Swingable Shaft
perform Condition	comprising Bending angle	ReducingInterfering	robot ■ Reduction gear		welding ■ Axes
	 Stable posture 	 Efficiency 	Plate		
	 Result of the first 	 Desired gait 	■ Movement		
	PathImproving	DegreeAction force	Industrial robotBody into		
	ImprovingCoordinate	 Action force Acquisition unit 	contact		
Rail	system	 Workpiece 	Applied		
	Center of gravity	 Welding gun 	Welding		
	 Bending and 	 Linear guide 	 Recognized 		
Command	stretching	Interpolation	Prescribed		
	 Real space 	 Configured to 	■ Power		
	 Plurality of finger 	search Anexes	FrameElevating		
	mechanisms End effector	Apexes	ElevatingActuator		
	 End effector Detection unit 		 Machine 		
	Detection unit		Finger		
			 Articulated robot having 		

PANASONIC CORP

Robot Arm

- Means
- First arm
- Control device
- First moving
- Driving
- Unit provided Portion
- Detecting
- Connected Horizontal
- Control apparatus
- Supporting
- Transporting
- Posture
- Pair of first
- Manipulator
- Input
- Capable of reducing
- Arm coupled
- Motion
- Recognizing
- Fourth arm
- Endless belt Center of gravity
- Arm is recorded

Industrial robot

- Industrial robot having
- Control
- Respective first
- Turning
- Surface
- Sensor
- Movable
- Means includes
- .loint
- Horizontal articulated
- First arm having Driving device
- Opposite end
- Having one end connected
- Calculating means
- Block

Orthogonal robot

- Robot system
- Mounted
- Housing
- Transfer system
- Robot capable
- Force
- Electronic
- Control device for controlling

ABB AB

Point

- Second position
- Robot coordinate system
- Tool Center point
- Arm
- Upper Arm
- Measuring point
- Rotation of the first
- Effecting motion
- Calibration object
- Orientation of the object
- Fixed point
- Start position
- Second plane
- Second drive means
- Longitudinal axis
- Amplitude signal Second carriage
- Error signal

Orientation

- Arm system
- Distance
- Velocity
- Unit is arranged
- Wrist
- Reference position
- Range of the robot
- Defined by input signals
- Configured to move
- Robots and external
- Drive means
- Data processing

Control unit

- Axes of movement
- Program
- Adapted to move
- Second arm
- First position
- Value
- Calculating
- Signal
- Robot tool
- Opposite sides
- Mounted
- Monitoring
- Locking member
- Gripper
- End element
- Carrying the object
- Adapted to measure forces
- Switch
- Spring
- Spray
- Perpendicular to the
- Device for handling
- Coordinate

Control signals

- Control signals representing
- Input signals
- Industrial robot
- having Graphical user
- interface
- Robot control unit
- Point associated Operating position
- Displacement
- Welding
 Rotation of the upper arm
 - Intersects

Sensor

- Surface of an object
- Arm of the robot
- Receive
- Operating
- Axis of rotation and translation
- Attached to the robot
- Workpiece
- Substantially parallel
- Element having Correction
- Communication

HITACHI GROUP

MotorPointVerticalDriving mechani		Control method
Vertical	-	Motor
	-	Point
 Driving mechani 	-	Vertical
		Driving mechani

Arm

anism

Output shaft

Coordinate

Control system Section

Rotary member Command value

Center axis

Upper arm Memory means for storing

Industrial robot

Welding robot Articulated type

Manual operation

Manipulator Automatic welding

Apparatus for an industrial robot

Manipulator

Drive means

Operation control

Rotation Connected

Shaft positioned

Movable

Position detecting

Supported Steps

Second arm Fixed

Detecting signal

Value Horizontal

Arm is moved

Driven

Vertical axis

Memory means

Coupled Actuator

Holding Displacement

Command Pair

Function Cylinder

Sprocket Slider

Rectangular coordinate system

Range

Pulse Program

Parameters representing

Manual

Forearm

Robot control

Angle

Rotation movement

Portion

Robot mechanism

Stopping

Sequence

Posture

Motor mounted

Articulated robot

Adiustina

Transformation Rotation about a

vertical Pattern

Head

Gripper

Counting

Calculated

Linkage

Industrial robot

Arm having

Orientation Wrist mounted

Shaft of said first

Perpendicular

Parallel

Means for driving

said arm

Interpolation

End of the lever Detector

Arm of the robot

X-Y

Structure

Member mounted

Encoder

Welding

Type robot

Orthogonal type robot

Coordinate type

Transmission

Double arm type robot

Cylindrical

End effector

Cable

Robot system

Robot operation Arm respectively

Installed

Drive motor

Workpiece

Linear

Length

Interface

.loint

Means

Space

Plate

Periphery

Machine

Executed

Track

Parallelogram

Improve

Cooperation

Belt

Assembled

Vertical: Medical Applications

Fluid-dispensing instruments

HANSEN MEDICAL INC

Drive unit Robotically controlled medical instrument Proximal end Flexible Operative Mechanical cabling Instrument driver Instrument assembly Guide assembly Elongated shaft Adapter Robotic medical system Surgeon manipulation Shaft and a driver Robotic surgery apparatus Minimally invasive Interchangeable surgical instrument Central axis Carriage assembly Outer and inner Medical implement Guide member End effector Flexible instrument Robotic Operatively coupled Instrument assembly Drive Proximal and distal Medical Interchangeable instrument Axis	Robotic medical system Medical instrument assembly Coaxial catheter system Inner medical Electromechanical driver configured for being coup Surgical instrument Probe Controller configured for directing the motor Array Arrangement Anatomical vessel Storage Axially	Catheter Instrument system Interface Outer Mechanically coupled Belt Single Plurality of actuating elements Delivery	 Medical procedure on a patient Input device Instrument driver Plurality of instruments Internal operative Plurality of instruments 	Mechanically drivable Subject is mounted Response to the at least one command Control movement Patient Jaw Controller Rigid support Position Lumen Drivably
Sheath instrument				

INTUITIVE SURGICAL INC

Image display Surgical end effector Medical system Image capture device Surgical procedure Generate Video System transmitting Point Minimally invasive Image corresponding Assembly Ultrasound image Surgical tool Section Machine readable code Instrument with respect Hand of an operator Configured to drive Cardiac Beating heart Threshold Display the image Adapted	Medical device Response to movement Input device Sliding mode control Robotic surgical system Robotic surgery Parameter Operator manipulation End effector Configured to effect	Joint Robotic surgical Motions of the joint Surgical instrument Manipulation of the handle Robotic arm User manipulation of a master manipulator Surgery Arm to move Grip
--	---	---

Appendix A: Key Assignee Normalization Table

Note: The tables below include normalization from US Assignments database and so some assignees may appear under multiple normalized names.

HITACHI GROUP

HITACHI KOKI KK
HITACHI KEIYO ENG
HITACHI DENSHI ENJINIARINGU KK
HITACHI SHIPBUILDING ENG CO
HITACHI LTD
HITACHI TECHNO ENG
HITACHI METALS LTD
NISHIUCHI SHIGETO
NONAKA YOUICHI
HITACHI HIGH TECH CORP

FANUC CORP

FANUC LTD
JHAVERI NISHANT
ORR IAN H
KOBAYASHI HIROHIKO
GMF ROBOTICS CORP
FANUC ROBOTICS NORTH AMERICA
AKEEL HADI
TSAI JASON
CLIFFORD SCOTT J
GRACA RANDY
NIEDERQUELL BRADLEY O

ABB AB

ABB TECHNOLOGY AG
ASEA AB
ABB ROBOTER GMBH
CINCINNATI MILACRON INC
GRACO ROBOTICS INC
ERIKSSON BENGT
KROGEDAL ARNULF
ASEA BROWN BOVERI

PANASONIC CORP

MATSUSHITA ELECTRIC IND CO LTD
MATSUSHITA DENKI SANGYO KK
MUKAI YASUSHI
NAGAI TAKASHI
TAKAHASHI WATARU

HONDA MOTOR CO. LTD.

HONDA ENGINEERING CO LTD
SANO SHIGEO
HASEGAWA TADAAKI
ASAMIZU KENICHI
ISHIDA TAKETO
SHIBAYAMA TAKAO

Appendix B: Search Strings Used for Categorization

Categorization: Types	Catego	rizatio	n: Types
-----------------------	--------	---------	----------

1. Anthropomorphic Robots

Anthropomorphic Robots	
(TAC) contains (humanoid or android or	10 results
anthropomorphic* or anthropomorfic*)	

2. Articulated Robots

Articulated Robots	
(TAC) contains (articulated* or (mobile w/2	234 results
robot*) or legged or hexapod)	

3. Cartesian / Gantry Robots

Cartesian / Gantry Robots		
(TAC) contains (cartesian* or gantry* or	211 results	
orthogonal* or (linear* w/2 robot*))		

4. Cylindrical Robots

Cylindrical Robots	
(TAC) contains (((cylindrical or cylinder or	11 results
circular) w/2 robot*) or (prismatic w/2 joint*))	

5. Industrial Robots

Industrial Robots	
(TAC) contains ((industrial or industry or	297 results
industrie w/3 robot*) or industrierobo*)	

6. Parallel Robots

Parallel Robots	
(TAC) contains (parallel w/3 (robot* or	31 results
manipulator* or manipulater*))	

7. SCARA Robots

SCARA Robots	
(TAC) contains (scara or (parallel w/3 joint*) or	19 results
(selective w/2 (compliance or compliant)))	

8. Spherical/Polar Robots

Spherical/Polar Robots	
(TAC) contains ((polar w/2 (coordinate* or robot*)) or dovetail or (linear w/2 bearing*) or spherical* or (prismatic w/2 joint*))	45 results

Categorization: Applications

1. Agriculture

Agriculture		
(TAC) contains (agricultur* or seed* or pluck* or farm* or agro* or herbi* or cultivat* or scouting or harvest* or crop or forage* or fertili* or insecti* or weed* or irrigat* or sow or sowing or plough* or horticultur* or pesti* or flower*or planting* or planta* or milk* or sprinkl*)	16 results	

2. Defense

Defense		
(TAC) contains (defence* or defense* or	22 results	
combat* or aerospace or aeronautic* or		
aerodynamic* or navy or army or airforce or		
aircraft or airplane* or airline* or military or		
armo* or missile* or weapon* or sniper or		
copter* or artillery or surveillan*)		

3. Material Handling

Material Handling		
(TAC) contains (dispensing or dispatch* or	457 results	
pallet* or packag* or handel* or handl* or		
((transferring or moving) w/2 (object* or		
objekt* or material* or device* or devise* or		
article* or system* or substrate*)) or stack* or		
transport* or fetch*)		

4. Medical

Medical	
(TAC) contains (medical* or surger* or	112 results
medicin* or surgic* or stent* or cancer* or	
mitral* or laparoscop* or endoscop* or	
angioplast* or coronary* or biopsy or patient*	
or cathet* or radiat* or massage)	

5. Other Industrial Applications

Other Industrial Applications	
(TAC) contains (bonding or sealing or polishing or coating or spray* or assembl* or foundry or drill* or waterjet* or (water w/2 jet*) or milling or grind* or deburr* or lacquer* or gelatin* or riveting or gluing or glue* or paint* or hemming or dust* or clean* or sludge or (waste* w/2 material*))	417 results

6. Welding

Welding	
(TAC) contains ((arc or mig or tig or spot or	55 results
laser or resistance or seam or plasma or flux	
w/2 weld*) or welding or solder*)	

Categorization: Parts

1. Actuators

Actuators	
(TAC contains (actuator* or driver*)	256 results

2. Controllers

Controllers	
(TAC) contains ((controller w/2 robot*) or	52 results
"lead-through" or "record-playback")	

3. End Effectors

End Effectors	
(TAC) contains (grip* or effecter* or effector*	371 results
or (end w/2 effect*) or dextrous* or	
dexterous* or finger*)	

4. Manipulators

Manipulators	
(TAC) contains (manipulater* or manipulator*	309 results
or "micromanipulater" or "micromanipulator")	

5. Sensors

Sensors	
(TAC) contains (sensor* or sensing* or detector*)	343 results

Summary

Robotics is a rapidly growing field, as we continue to research, design, and build new robots that serve various practical purposes, domestically, commercially, or defense. Robotic arms are used in most industries such as material handling, welding, medical fields, agricultural activities.

Companies such as Fanuc Corp, Hitachi Group, Honda Motor Co Ltd, Hansen Medical Inc. are amongst the leaders with the largest patent portfolios.

This report graphically analyzes robotic arm technologies from various perspectives, categorizes and highlights the key companies involved, defines unique categories.

About Patent iNSIGHT Pro

Patent iNSIGHT Pro™ is a comprehensive patent analysis platform that allows you to accelerate your time-to-decision from patent analysis activities. Designed from inputs by experienced patent researchers, Patent iNSIGHT Pro easily blends into your existing Research workflow. Patent iNSIGHT Pro is used by leading legal services, Pharmaceutical & biotech, electronics companies and research organization across US, Europe, South America and India with more than 400 end users. Patent iNSIGHT Pro is developed and marketed by Gridlogics , a research driven IT Company specializing in providing intellectual property analysis and visualization solutions to aid R&D and corporate strategy.

Gridlogics is headquartered in Pune, India and has a sales presence in Delhi, Mumbai and USA.

For more information:

Visit us at: www.patentinsightpro.com

Or call us at: 1-408-786-5524

Or mail us at: contact@patentinsightpro.com

Have a comment on this report? Mail us at feedback tr@patentinsightpro.com

Sources & References

- 1. http://en.wikipedia.org/wiki/Robotic arm
- 2. http://www.robots.com/education
- 3. http://www.electronicsteacher.com/robotics
- 4. http://science.howstuffworks.com/robot.htm

